MTH 303 Real analysis

Homework 5

Notation: E denotes a nonempty subset of \mathbb{R} unless specified otherwise.

1. Let p be a limit point of E. If f and g are real-valued functions defined on E such that

$$\lim_{x \to p} f(x) = A \text{ and } \lim_{x \to p} g(x) = B$$

then show that

(a)
$$\lim_{x \to p} (f+g)(x) = A + B$$

- (b) $\lim_{x \to p} (fg)(x) = AB$
- (c) $\lim_{x \to p} \left(\frac{f}{g}\right)(x) = \frac{A}{B}$, if $B \neq 0$
- 2. Given two functions $f: E \to \mathbb{R}$ and $g: f(E) \to \mathbb{R}$ be functions, consider the function $h: E \to \mathbb{R}$ defined by $h(x) = g(f(x)), x \in E$. If f is continuous at $p \in E$ and g is continuous at $f(p) \in f(E)$, then show that h is continuous at p.
- 3. A function $f: E \to \mathbb{R}$ is continuous if and only if $f^{-1}(C)$ is closed for every closed set C in \mathbb{R} .
- 4. Suppose E is a compact set and $f: E \to \mathbb{R}$ is a continuous and one-one function on E, then the inverse function f^{-1} defined on f(E) by $f^{-1}(f(x)) = x, x \in E$, is continuous on f(E).
- 5. Let f be a continuous real-valued function defined on the interval [a, b]. If f(a) < f(b)and if $c \in (f(a), f(b))$, then there exists a point $x \in (a, b)$ such that f(x) = c.
- 6. Suppose f is a real-valued function defined on \mathbb{R} such that

$$\lim_{h \to 0} [f(x+h) - f(x-h)] = 0$$

for every point $x \in \mathbb{R}$. Does this imply that f is continuous?

- 7. Let f be a real-valued continuous function on \mathbb{R} . Show that $f(\overline{E}) \subseteq \overline{f(E)}$ for every subset E in \mathbb{R} . Also, show by an example, that $f(\overline{E})$ can be a proper subset of $\overline{f(E)}$.
- 8. Let $f: E \to \mathbb{R}$ be a continuous function and Z(f) denote the set of all points $p \in E$ at which f(p) = 0. Prove that Z(f) is closed. The set Z(f) is said to be the zero set of f.
- 9. Let f and g be real-valued continuous functions defined on \mathbb{R} such that f(p) = g(p) for all $p \in \mathbb{Q}$. Prove that f(p) = g(p) for all $p \in \mathbb{R}$.
- 10. If f is a real-valued continuous function defined on a closed set $E \subseteq \mathbb{R}$, prove that there exists a continuous real-valued function g defined on \mathbb{R} such that g(x) = f(x) for all $x \in E$. (Such a function g is called a continuous extension of f from E to \mathbb{R} .) Show that the result becomes false if the assumption that E is closed is dropped.

MTH 303 Homework 5 (Continued)

- 11. Let f be a real-valued uniformly continuous function on a bounded set E in \mathbb{R} . Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted.
- 12. If f is not uniformly continuous then show that for some $\epsilon > 0$ there exist sequences $\{p_n\}$ and $\{q_n\}$ such that $|p_n q_n| \to 0$ but $|f(p_n) f(q_n)| \ge \epsilon$.
- 13. Show that uniform continuous functions map Cauchy sequences to Cauchy sequences, i.e., if f is uniformly continuous and $\{x_n\}$ is Cauchy, then $\{f(x_n)\}$ is Cauchy.
- 14. Let I = [0, 1] be the closed unit interval. Suppose f is a continuous function from I to itself. Prove that there exists a point $x \in I$ such that f(x) = x. (Such a point x is called a fixed point of f.)
- 15. Let f be a real-valued continuous function defined on \mathbb{R} such that f(v) is open for every open set V in \mathbb{R} . Prove that f is monotonic.
- 16. Let (x) = x [x] denote the fractional part of x, where [x] denote the largest integer contained in x. What discontinuities do the functions $x \to (x)$ and $x \to [x]$ have?
- 17. Consider the function f defined on \mathbb{R} by f(x) = 0 if x is irrational and $f(x) = \frac{1}{n}$ if $x = \frac{m}{n}$, where m and n are integers without any common divisors. Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.
- 18. Define the distance from $x \in \mathbb{R}$ to E by

$$\rho_E(x) = \inf_{y \in E} |x - y|$$

- (a) Prove that $\rho_E(x) = 0$ if and only if $x \in \overline{E}$.
- (b) Prove that ρ_E is uniformly continuous function on \mathbb{R} , by showing that

$$|\rho_E(x) - \rho_E(y)| \le |x - y|$$
 for all $x, y \in \mathbb{R}$.

- 19. Let K and F are disjoint sets in \mathbb{R} . If K is compact and F is closed, then prove that there exists a $\delta > 0$ such that $|x y| > \delta$ if $x \in K$ and $y \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.
- 20. Let A and B be disjoint nonempty closed sets in \mathbb{R} . Define

$$f(x) = \frac{\rho_A(x)}{\rho_A(x) + \rho_B(x)}, \ x \in \mathbb{R},$$

where $\rho_A(x)$ denotes the distance from $x \in \mathbb{R}$ to A as defined in Question 18. Show that f is a continuous function on \mathbb{R} whose range lies in the closed unit interval [0, 1]. Also, show that f(x) = 0 precisely on A and f(x) = 1 precisely on B.