MTH 303

Real analysis

Homework 5

Notation: E denotes a nonempty subset of \mathbb{R} unless specified otherwise.

1. Let p be a limit point of E. If f and g are real-valued functions defined on E such that

$$
\lim _{x \rightarrow p} f(x)=A \text { and } \lim _{x \rightarrow p} g(x)=B
$$

then show that
(a) $\lim _{x \rightarrow p}(f+g)(x)=A+B$
(b) $\lim _{x \rightarrow p}(f g)(x)=A B$
(c) $\lim _{x \rightarrow p}\left(\frac{f}{g}\right)(x)=\frac{A}{B}$, if $B \neq 0$
2. Given two functions $f: E \rightarrow \mathbb{R}$ and $g: f(E) \rightarrow \mathbb{R}$ be functions, consider the function $h: E \rightarrow \mathbb{R}$ defined by $h(x)=g(f(x)), x \in E$. If f is continuous at $p \in E$ and g is continuous at $f(p) \in f(E)$, then show that h is continuous at p.
3. A function $f: E \rightarrow \mathbb{R}$ is continuous if and only if $f^{-1}(C)$ is closed for every closed set C in \mathbb{R}.
4. Suppose E is a compact set and $f: E \rightarrow \mathbb{R}$ is a continuous and one-one function on E, then the inverse function f^{-1} defined on $f(E)$ by $f^{-1}(f(x))=x, x \in E$, is continuous on $f(E)$.
5. Let f be a continuous real-valued function defined on the interval [a,b]. If $f(a)<f(b)$ and if $c \in(f(a), f(b))$, then there exists a point $x \in(a, b)$ such that $f(x)=c$.
6. Suppose f is a real-valued function defined on \mathbb{R} such that

$$
\lim _{h \rightarrow 0}[f(x+h)-f(x-h)]=0
$$

for every point $x \in \mathbb{R}$. Does this imply that f is continuous?
7. Let f be a real-valued continuous function on \mathbb{R}. Show that $f(\bar{E}) \subseteq \overline{f(E)}$ for every subset E in \mathbb{R}. Also, show by an example, that $f(\bar{E})$ can be a proper subset of $\overline{f(E)}$.
8. Let $f: E \rightarrow \mathbb{R}$ be a continuous function and $Z(f)$ denote the set of all points $p \in E$ at which $f(p)=0$. Prove that $Z(f)$ is closed.
The set $Z(f)$ is said to be the zero set of f.
9. Let f and g be real-valued continuous functions defined on \mathbb{R} such that $f(p)=g(p)$ for all $p \in \mathbb{Q}$. Prove that $f(p)=g(p)$ for all $p \in \mathbb{R}$.
10. If f is a real-valued continuous function defined on a closed set $E \subseteq \mathbb{R}$, prove that there exists a continuous real-valued function g defined on \mathbb{R} such that $g(x)=f(x)$ for all $x \in E$. (Such a function g is called a continuous extension of f from E to \mathbb{R}.) Show that the result becomes false if the assumption that E is closed is dropped.

MTH 303 Homework 5 (Continued)

11. Let f be a real-valued uniformly continuous function on a bounded set E in \mathbb{R}. Prove that f is bounded on E. Show that the conclusion is false if boundedness of E is omitted.
12. If f is not uniformly continuous then show that for some $\epsilon>0$ there exist sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ such that $\left|p_{n}-q_{n}\right| \rightarrow 0$ but $\left|f\left(p_{n}\right)-f\left(q_{n}\right)\right| \geq \epsilon$.
13. Show that uniform continuous functions map Cauchy sequences to Cauchy sequences, i.e., if f is uniformly continuous and $\left\{x_{n}\right\}$ is Cauchy, then $\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
14. Let $I=[0,1]$ be the closed unit interval. Suppose f is a continuous function from I to itself. Prove that there exists a point $x \in I$ such that $f(x)=x$. (Such a point x is called a fixed point of f.)
15. Let f be a real-valued continuous function defined on \mathbb{R} such that $f(v)$ is open for every open set V in \mathbb{R}. Prove that f is monotonic.
16. Let $(x)=x-[x]$ denote the fractional part of x, where $[x]$ denote the largest integer contained in x. What discontinuities do the functions $x \rightarrow(x)$ and $x \rightarrow[x]$ have?
17. Consider the function f defined on \mathbb{R} by $f(x)=0$ if x is irrational and $f(x)=\frac{1}{n}$ if $x=\frac{m}{n}$, where m and n are integers without any common divisors. Prove that f is continuous at every irrational point, and that f has a simple discontinuity at every rational point.
18. Define the distance from $x \in \mathbb{R}$ to E by

$$
\rho_{E}(x)=\inf _{y \in E}|x-y| .
$$

(a) Prove that $\rho_{E}(x)=0$ if and only if $x \in \bar{E}$.
(b) Prove that ρ_{E} is uniformly continuous function on \mathbb{R}, by showing that

$$
\left|\rho_{E}(x)-\rho_{E}(y)\right| \leq|x-y| \text { for all } x, y \in \mathbb{R} .
$$

19. Let K and F are disjoint sets in \mathbb{R}. If K is compact and F is closed, then prove that there exists a $\delta>0$ such that $|x-y|>\delta$ if $x \in K$ and $y \in F$. Show that the conclusion may fail for two disjoint closed sets if neither is compact.
20. Let A and B be disjoint nonempty closed sets in \mathbb{R}. Define

$$
f(x)=\frac{\rho_{A}(x)}{\rho_{A}(x)+\rho_{B}(x)}, x \in \mathbb{R}
$$

where $\rho_{A}(x)$ denotes the distance from $x \in \mathbb{R}$ to A as defined in Question 18. Show that f is a continuous function on \mathbb{R} whose range lies in the closed unit interval $[0,1]$. Also, show that $f(x)=0$ precisely on A and $f(x)=1$ precisely on B.

